
Building Dapp: Under the Hood

Jason Han, Ph.D
Adjunct Professor of KAIST School of Computing

Founder of Ground X & Klaytn

web3classdao@gmail.com

http://web3classdao.xyz/kaist/

Lecture 10 (2023-04-05)

Building Web3 & Blockchain Applications
(CS492 Special Topics in Computer Science)
Spring 2023

Token Example

with hardhat, ethers.js & react

Two popular tools to develop contracts

truffle vs. hardhat

truffle
• The oldest tool, developed in 2016 by ConsenSys

• Comprehensive documentation and resources to learn

hardhat
• A new tool released in 2019 by the Nomic Foundation, and is supported by the

Ethereum Foundation

hardhat over truffle
• error handling and testing tools like console.log and stack traces
• easier default local network with Hardhat Network
• more flexible to customize with plugins and tasks
• use ethers.js as the default JavaScript library (more user-friendly and easier to use)
• easily integrate TypeScript into hardhat
• easier to fork the blockchain using Alchemy and Infura

https://guideofdapp.com/posts/truffle-vs-hardhat/
https://101blockchains.com/hardhat-vs-truffle/

https://trufflesuite.com/blog/truffle-vs-hardhat-breaking-down-the-difference-between-ethereums-top-development-environments/

https://npmtrends.com/hardhat-vs-truffle

A simple token Dapp
from hardhat tutorial

It’s simple, well-documented, and comprehensive

It can be used as the starting point for your Ethereum project

https://hardhat.org/tutorial

Clone the code here!
https://github.com/NomicFoundation/hardhat-boilerplate

git clone https://github.com/NomicFoundation/hardhat-boilerplate.git

Toolsets that we will use

1. Package manager: npm

2. Web server for the web app: node.js & react

3. Smart contract IDE: hardhat & ethers.js

4. Web browser & wallet: Chrome & Metamask

5. Local testnet: Hardhat Network

6. Public testnet: Sepolia

7. Code Editor: VSCode

1. Design (Problem Statement)

Problem Statement

• There is a fixed total supply of tokens that can't be changed.
• The entire supply is assigned to the address that deploys the contract.
• Anyone can receive tokens.
• Anyone with at least one token can transfer tokens.
• The token is non-divisible. You can transfer 1, 2, 3 or 37 tokens but not 2.5.
• It’s not compatible to ERC20.

2. Develop

smart contract

w/ Remix

3. Deploy & test smart contract (Local)

mkdir Token

cd Token

npm init

npm install --save-dev hardhat

npx hardhat

1) install required packages

npm install --save-dev @nomicfoundation/hardhat-toolbox

Token

contracts

node_modules

scripts

hardhat.config.js

solidity contracts for a project

packages

scripts for deploying contracts

configuration file

Generated by npx hardhat

test
scripts for testing contracts

2) create Token.sol to the contracts folder

3. Deploy & test smart contract (Local)

3) compile the contract

npx hardhat compile

4) create a test script (Token.js) to the test folder

5) test the contract

npx hardhat test

const { expect } = require("chai");

describe("Token contract", function () {
it("Deployment should assign the total supply of tokens to the owner", async function () {
const [owner] = await ethers.getSigners();

const Token = await ethers.getContractFactory("Token");

const hardhatToken = await Token.deploy();

const ownerBalance = await hardhatToken.balanceOf(owner.address);
expect(await hardhatToken.totalSupply()).to.equal(ownerBalance);

});

it("Should transfer tokens between accounts", async function() {
const [owner, addr1, addr2] = await ethers.getSigners();

const Token = await ethers.getContractFactory("Token");

const hardhatToken = await Token.deploy();

// Transfer 50 tokens from owner to addr1
await hardhatToken.transfer(addr1.address, 50);
expect(await hardhatToken.balanceOf(addr1.address)).to.equal(50);

// Transfer 50 tokens from addr1 to addr2
await hardhatToken.connect(addr1).transfer(addr2.address, 50);
expect(await hardhatToken.balanceOf(addr2.address)).to.equal(50);

});
});

Token.js

artifacts

cache

compiled artifacts

cache its internal stuff

4. Develop Web App

1) create a template directory for a web app

npx create-react-app frontend
frontend

web app files

2) write web UI and web app

frontend/src/index.js

frontend/src/components/Dapp.js

5. Deploy & test all (Local)

1) run Hardhat Network (local blockchain)

cd Token

npm install

npx hardhat node

2) deploy contracts to Hardhat Network

npx hardhat --network localhost run scripts/deploy.js

3) start the react web app

cd frontend

npm install

npm run start

4) open http://127.0.0.1:3000/ in a browser

const path = require("path");

async function main() {
// This is just a convenience check
if (network.name === "hardhat") {
console.warn(
"You are trying to deploy a contract to the Hardhat Network, which" +
"gets automatically created and destroyed every time. Use the Hardhat" +
" option '--network localhost'"

);
}

// ethers is available in the global scope
const [deployer] = await ethers.getSigners();
console.log(
"Deploying the contracts with the account:",
await deployer.getAddress()

);

console.log("Account balance:", (await deployer.getBalance()).toString());

const Token = await ethers.getContractFactory("Token");
const token = await Token.deploy();
await token.deployed();

console.log("Token address:", token.address);

// We also save the contract's artifacts and address in the frontend directory
saveFrontendFiles(token);

}

function saveFrontendFiles(token) {
const fs = require("fs");
const contractsDir = path.join(__dirname, "..", "frontend", "src", "contracts");

if (!fs.existsSync(contractsDir)) {
fs.mkdirSync(contractsDir);

}

fs.writeFileSync(
path.join(contractsDir, "contract-address.json"),
JSON.stringify({ Token: token.address }, undefined, 2)

);

const TokenArtifact = artifacts.readArtifactSync("Token");

fs.writeFileSync(
path.join(contractsDir, "Token.json"),
JSON.stringify(TokenArtifact, null, 2)

);
}

main()
.then(() => process.exit(0))
.catch((error) => {
console.error(error);
process.exit(1);

});

scripts/deploy.js

5. Deploy & test all (Local)

5) set your network in MetaMask to Localhost:8545

click “connect wallet”

6) create a custom hardhat task (tasks/faucet.js)

to send 100 MHT and 1 ETH to an address

7) run the faucet task

npx hardhat --network localhost faucet <address>

Video-05

Deploying and testing contracts

with Hardhat locally

6. Deploy & test all (Testnet)

Leave it as your challenge!
Using the previous example as a guide, give it a try

ethers.js

Two most popular Ethereum Javascript libraries

• Original Ethereum JavaScript API library

• Launched in 2015 by the Ethereum Foundation

• LGPL-3.0 license

Pros
• Extremely Popular

• Easier to find tutorials, developers, community

support, etc

Cons
• A few MBs, significantly larger than ethers

• Original Ethereum JavaScript API library

• Launched in 2015 by a Canadian software

engineer named Richard Moore

• A lightweight alternative to Web3.js

• MIT license

Pros
• Separating the wallet and the provider

• Extremely lightweight library, 77 KB compressed

and 284 KB uncompressed

• User-friendly API structure

Cons
• Relatively new library, lack of foundational

projects and companies

web3.js ethers.js

Our choice

https://docs.alchemy.com/docs/ethersjs-vs-web3js-sdk-comparison

https://guideofdapp.com/posts/ethers-vs-web3/

https://npmtrends.com/ethers-vs-web3

Signer: an Ethereum account that allows for transactions to be signed
• Wrap all operations that interact with an account

• An account generally has a private key located somewhere

• Abstract and cannot be directly instantiated. Instead, use one of sub-classes, such as the Wallet,

VoidSigner or JsonRpcSigner

• All important properties of a Signer are immutable

• getAddress(), getBalance(), signTransaction(), sendTransaction()

Wallet: Sub-class of signer as a standard Externally Owned Account (EOA)
• Sign transactions and messages using a private key

• new ethers.Wallet(privateKey): create a new Wallet instance

• ethers.Wallet.createRandom(): return a new Wallet with a random private key

• ethers.Wallet.fromMnemonic(mnemonic): create an instance from a mnemonic phrase

Account-related classes of ethers.js

https://docs.ethers.org/v6/getting-started/

https://docs.ethers.org/v5/api/signer/

https://docs.alchemy.com/docs/ethers-js-signer

Contract: an abstraction of a contract deployed on the Ethereum
• contract.attach(): retrieve a new instance of a contract associated with an address

• contract.address(): retrieve the contract or ensName that created the contract

• ontract.queryFilter(): retrieve events that match a specific event

ContractFactory: a factory class to deploy a contract
• Sends a special type of transaction, an initcode transaction (i.e. the to field is null, and the data field

is the initcode)

• new ethers.ContractFactory(interface , bytecode [, signer]): create a new instance of a

ContractFactory for the contract

• contractFactory.attach(address): get an instance of a Contract attached to address

• contractFactory.deploy(...args): deploy the Contract with args

https://docs.ethers.org/v6/getting-started/

https://docs.ethers.org/v5/api/contract/

https://docs.alchemy.com/docs/ethers-js-contract

Contract-related classes of ethers.js

Provider: a read-only connection to the blockchain
• Abstraction to the Ethereum Network that allows developers to connect to a standard Ethereum

node

• provider.getBalances() to retrieve the balances from specific addresses

• provider.getGasPrice() to retrieve the gas price for a transaction that is displayed to a user

• provider.call() to read from the blockchain and execute smart contracts, but cannot publish to the

blockchain

• provider.getTransaction() to retrieve the transaction hash to confirm the completion of an execution

by the user

Various sub-classes to implement the Provider class
• DefaultProvider: the safest, easiest way to begin developing on Ethereum

• JsonRpcProvider: a popular method for interacting with Ethereum and is available in all major

Ethereum node implementations

• Web3Provider: an EIP-1193 Provider or an existing Web3Provider-compatible Provider, moving from a

web3.js based application to ethers

• API Providers: providers from third-party services, InfuraProvider, AlchemyProvider, EtherscanProvider,

etc. (Not recommended to use in order to mitigate the reliance on third-parties)

https://docs.ethers.org/v6/getting-started/

https://docs.ethers.org/v5/api/providers/

https://docs.alchemy.com/docs/ethers-js-provider

Blockchain-related classes of ethers.js

Interact with the Ethereum blockchain in a simple way
The same API as ethers.js with some extra Hardhat-specific functionality

Helper functions
• getContractFactory(): return a new ContractFactory instance

• getContractAt(): return a new Contract instance

• getSigners(): return Signers (accounts) in the network

• getSigner(address): return a Signer (account) of the address

hardhat-ethers plugin

https://hardhat.org/hardhat-runner/plugins/nomiclabs-hardhat-ethers

Deploy the smart contract

scripts/deploy.js

deployer: Signer

the first account of network

Token: ContractFactory

ContractFactory for Token contract

token: Contract

Token contract

Send initial tokens to an account (faucet)

tasks/faucet.js

sender: Signer

the first account of network

token: Contract

Token contract

call the transfer function of Token

send tx

(send 1 ETH to receiver)

contract address

npx hardhat --network localhost faucet <address>

Test the smart contract

test/Token.js

call the transfer function of Token

from owner account

Token: ContractFactory

ContractFactory for Token contract

owner, addr1, addr2: Signer

the 1st, 2nd, 3rd account of network

hardhatToken: Contract

Token contract

new instance of Token contract

for 2nd account

(connect(addr1))

call the transfer function of Token

from 2nd account

Interact with MetaMask in Web App

frontend/src/components/Dapp.js

window.ethereum

JavaScript Ethereum Provider API

(EIP-1193)

request: wrapper function for RPCs

submit RPC requests via MetaMask

eth_requestAccounts

get accounts of MetaMask

window.Ethereum.on()

listen for events

accountChanged

when MetaMask account changed,

call handler to initialize with new address

chainChanged

when the network changed,

call handler to reset the dapp state

Web3Provider

an EIP-1193 Provider or

Web3Provider-compatible Provider

as an ethers.js Provider

ethers.Contract

create a new instance of the contract

MetaMask injects a global API into websites visited by its users at window.ethereum
This API allows websites to 1) request users' Ethereum accounts,
2) read data from blockchains the user is connected to (local, testnet, mainnet)
3) suggest that the user sign messages and transactions
The Ethereum JavaScript provider API is specified by EIP-1193

Methods
• ethereum.request(args): submit RPC requests to Ethereum via MetaMask

- methods: eth_requestAccounts, eth_accounts, eth_call, eth_getBalance, eth_sendTransaction, etc

• ethereum.on(eventType, handler): listen for a specific event and call a handler

- accountsChanged, chainChanged, connect, disconnect, message

Errors
• ethereum.request() throws errors (EIP-1474)

- 4001: The request was rejected by the user

- -32602: The parameters were invalid

- -32603: Internal error

MetaMask Ethereum Provider API

https://docs.metamask.io/guide/ethereum-provider.html

https://github.com/MetaMask/providers

https://eips.ethereum.org/EIPS/eip-1193

https://eips.ethereum.org/EIPS/eip-1474

Under the hood

What happen

when you call a smart contract function?

solc
(Solidity Compiler)

Token.sol

bytecode

ABI(Application Binary Interface)

The smart contract information

in a binary format

on the Ethereum Virtual Machine

An interpreter that facilitates

communication with the EVM bytecode

Human-readable JSON format

0x60806040526040518060400160405280601381526020017f4b41495
354204861726468617420546f6b656e00000000000000000000000000
815250600090816200004a9190620003ae565b506040518060400160
405280600381526020017f4b485400000000000000000000000000000
000000000000000000000000000008152506001908162000091919062
0003ae565b50620f4240600255348015620000a657600080fd5b…….

bytecode and ABI

https://www.alchemy.com/overviews/solidity-abi

https://www.alchemy.com/overviews/what-is-an-abi-of-a-smart-

contract-examples-and-usage

https://cypherpunks-core.github.io/ethereumbook/13evm.html
Source: https://hackernoon.com/hn-images/1*Sz1a7G2pQ62UnkHoieve4w.jpeg

ABI from Token.sol

frontend/src/contracts/Token.json

ABI JSON spec: https://docs.soliditylang.org/en/develop/abi-spec.html#json

ABI encoding

transfer(0x3ace454110abfb4c3b026e50d58c72d4f46ebbb6, 10)

0xa9059cbb Function selector
the first 4 bytes of the Keccak hash
of the ASCII form of the signature transfer(address, uint256)

0000000000000000000000003ace454110abfb4c3b026e50d58c72d4f46ebbb6

000a

to address, padded to 32 bytes

a uint256 value 10, padded to 32 bytes

0xa9059cbb0000000000000000000000003ace454110abfb4c3b026e50d58c72d4f4
6ebbb6000a

Sepolia etherscan: https://sepolia.etherscan.io/tx/0xe76959281cf6caf46765d1b754b9c2a3da4fe0e23d0e1415dfa2abeb95da3f55

ABI encoding example: https://docs.soliditylang.org/en/develop/abi-spec.html#examples

Sepolia Etherscan

encode a smart contract function

in binary format to send to Ethereum

Sending a transaction to a contract

{
"id": 2,
"jsonrpc": "2.0",
"method": “eth_sendTransaction",
"params": [

{
"from": "0x1923f626bb8dc025849e00f99c25fe2b2f7fb0db",
"gas": "0x55555",
"maxFeePerGas": "0x1234",
"maxPriorityFeePerGas": "0x1234",
"input": "0xabcd",

"nonce": "0x0",
"to": "0x07a565b7ed7d7a678680a4c162885bedbb695fe0",
"value": "0x1234“,
“data”:

“0xa9059cbb0000000000000000000000003ace454110abfb4c3b026e50d58c72d
4f46ebbb6000
0000a”

}
]

}

{
"jsonrpc": "2.0",
"id": 1,
"result": {

"blockHash":

"0xa957d47df264a31badc3ae823e10ac1d444b098d9b73d204c40426e57f47e8c
3",

"blockNumber": "0xeff35f",
"contractAddress": null, // string of the address if it was created
"cumulativeGasUsed": "0xa12515",
"effectiveGasPrice": "0x5a9c688d4",
"from": "0x6221a9c005f6e47eb398fd867784cacfdcfff4e7",
"gasUsed": "0xb4c8",
"logs": [{

// logs such as events
}],
"logsBloom": "0x00...0", // 256 byte bloom filter
"status": "0x1",
"to": "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
"transactionHash":

"0x85d995eba9763907fdf35cd2034144dd9d53ce32cbec21349d4b12823c6860c5
",

"transactionIndex": "0x66",
"type": "0x2"

}
}

eth_sendTransaction

Return: 32 bytes data of the transaction hash

eth_getTransactionReceipt [tx hash]

Return

https://ethereum.org/en/developers/docs/transactions/

https://ethereum.org/en/developers/docs/apis/json-rpc/

• Regular transactions: a transaction from one account to another

• Execution of a contract: a transaction that interacts with a deployed smart

contract. In this case, 'to' address is the smart contract address

• Contract deployment transactions: a transaction without a 'to' address,

where the data field is used for the contract code

Type of transactions

https://ethereum.org/en/developers/docs/transactions/

Wrap-up

We Learned

Building Token Dapp

Hardhat-based smart contract development

ethers.js & MetaMask Web3Provider
Under the hood: what happen in calling a contract

Note.
Many people simply copy and paste contract code

without understanding how it works.

Be careful when copying code,

and try to understand how it works.

Q & A

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36

