klaytn Building and Operating a Public Blockchain: Engineering Perspective

March 22, 2023

Sangmin Seo (Sam), Ph.D.

Director / Klaytn Foundation

About Sam

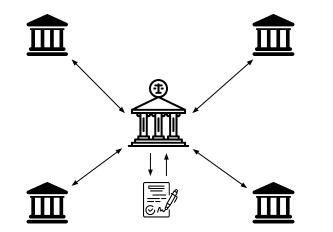
Sangmin Seo (Sam)

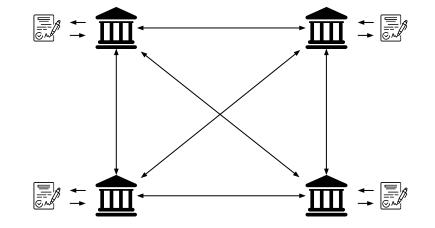
Director / Klaytn Foundation Seoul National University, Ph.D.

- (22~) Klaytn Foundation, Director
- (22~23) Krust Universe, CKO (Chief Klaytn Officer)
- (18~21) GroundX, CTO
- (17~18) Samsung Research
- (14~17) Argonne National Laboratory
- (12~14) ManyCoreSoft, CEO

Outline

- Problems that Blockchain is Solving
- Mainnet Development & Operation
- What's Next?

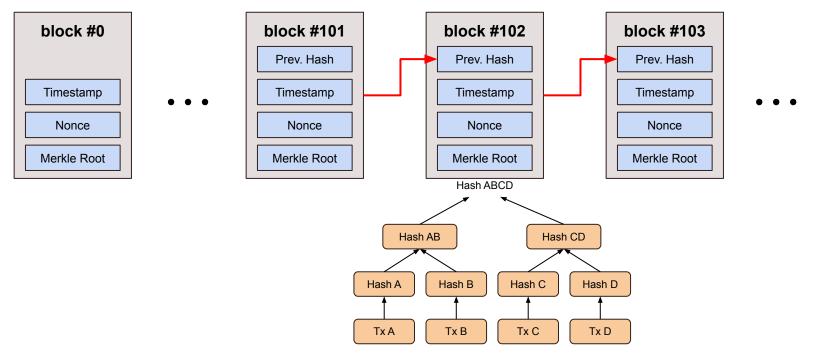



Problems that Blockchain is Solving

Trust Problem

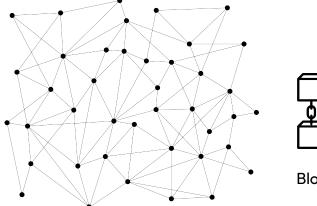
Can we create trust among untrusted entities in an algorithmic way?

Blockchain Approach


Each participant has a copy of the database, ensuring immutability.

Traditional Approach

Database is controlled by a central and trusted third-party.


Blockchain's Data Structure - Bitcoin

Genesis Block

Blockchain from the Perspective of Computer Science

Problem: How can untrusted nodes in a network create an immutable chain of data blocks?

Ċ P C

Blockchain

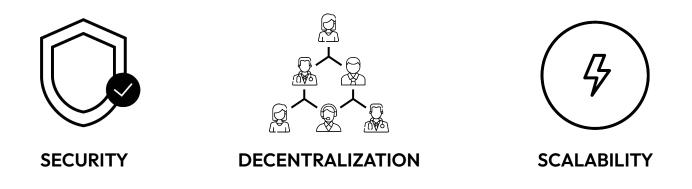
Data Structure

- Block: a container of transactions
- Blockchain: a singly-linked list of blocks

Smart Contract

- Programming language
- Virtual machine

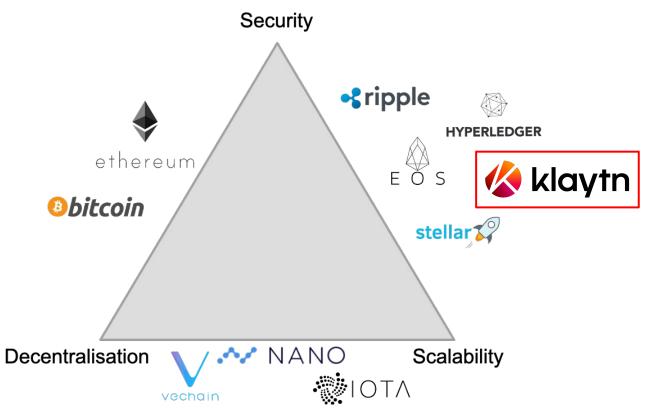
Architecture


• Distributed system with P2P network

Consensus Algorithm

 Distributed consensus algorithm that can solve the Byzantine generals problem^{*}

P2P Network


Blockchain Trilemma

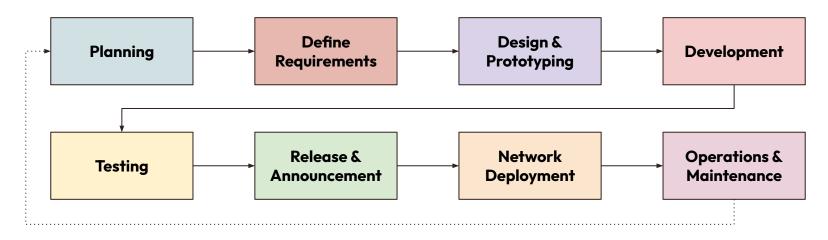
No blockchain can have all 3 attributes; They must choose **2 out of 3** of the attributes.

Blockchain Trilemma

Blockchain Platform

A platform that provides blockchain while enabling blockchain-based application development

	Ethereum	Hyperledger Fabric	R3 Corda	Ripple	Quorum	Hyperledger Sawtooth	EOS	Hyperledger Iroha	OpenChain	Stellar
Industry focus	Cross-Industry	Cross- Industry	Financial Services	Financial Services	Cross-Industry	Cross- Industry	Cross- Industry	Cross- Industry	Digital Asset Management	Financial Services
Ledger Type	Permissionless	Permissioned	Permissioned	Permissioned	Permissioned	Permissioned	Permissioned	Permissioned	Permissioned	Both Public & Private
Consensus Algorithm	Proof of Work	Pluggable Framework	Pluggable Framework	Probabilistic Voting	Majority Voting	Pluggable Framework	Delegated Proof-of- Stake	Chain-based Byzantine Fault Tolerant	Partionned Consensus	Stellar Consensus Protocol
Smart Contract	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
Governance	Ethereum Developers	Linux Foundation	R3 Consortium	Ripple Labs	Ethereum Developers and JP Morgan Chase	Linux Foundation	EOSIO Core Arbitration Forum(ECAF)	Linux Foundation	CoinPrism	Stellar Development Foundation



* https://www.leewayhertz.com/blockchain-platforms-for-top-blockchain-companies/

Mainnet Development & Operation

Mainnet (Blockchain Platform) Development Cycle

Similar to the typical software development cycle, but there are some unique challenges

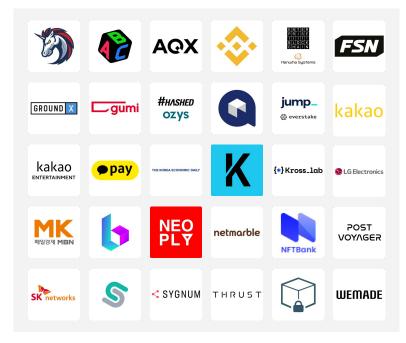
- **Backward compatibility**: new versions have to handle old chain data.
- **Error-free code**: the mainnet must not be halted due to any error \rightarrow this requires tremendous testing effort.
- Asynchronous network deployment/update: nodes are operated by different entities and the mainnet should not stop → deploying a new version needs a special process (e.g., rolling update) and communication between node operators.

Mainnet Scope & Ecosystem

Today, we will focus on **the protocol/mainnet development and operation**

Ethereum Ecosystem

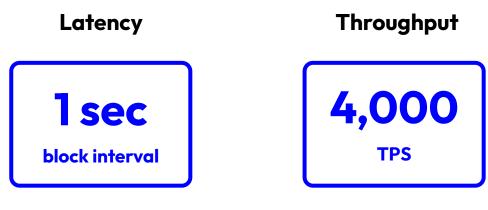
tps://www.reddit.com/r/ethereum/comments/m9sgqj/ethereum_ecosystem/



Klaytn in a Nutshell

- EVM-compatible public layer 1 blockchain
- Launched the mainnet Cypress in June 2019
- Istanbul BFT-based consensus algorithm
 - 30 global companies are participating in the governance council and operating consensus nodes (as of Feb 2023)
- Unique account & transaction model
- In line with the Klaytn 2.0 initiative, focusing on
 Metaverse and games while expanding the DeFi and NFT ecosystem

Klaytn Governance Council (as of Feb 2023)



Challenges on Scalability / Performance

Copyright © Klaytn. All rights reserved.

Klaytn Cypress Performance

Enables mobile app-like performance Supports production-grade enterprise usage

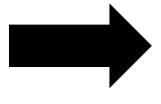
Performance Comparison (2019)

	Klaytn	Bitcoin	Ethereum	Ripple	EOS	Stellar
Time to finality	lsec	15 min	6 min	4 sec	180 sec	2-5 sec
Transactions per second (TPS)	4,000	7	15	1,500	3,000	1,000

Blockchains for Supply Chain Management: Architectural Elements and Challenges Towards a Global Scale Deployment. Logistics, Litke et. al. (2019). https://medium.com/perlin-network/bite-sized-2-why-is-tps-time-to-finality-important-bd01baffdf05 https://support.kraken.com/hc/en-us/articles/203325283-Cryptocurrency-deposit-processing-times

 $\langle\!\!\!\!\!\langle K$

Performance Comparison (2022)


	Klaytn	Solana	BSC (Binance Smart Chain)	Polygon	Polkadot	Avalanche	Fantom
Transactions per second (TPS)	4,000	65,000	100	10,000	1,500	4,500	10,000
Block time	lsec	0.4 sec	3 sec	2 sec	2-3 sec	1-5 sec	1-2 sec
Time to finality (Confirmation time)	lsec	7-10 sec	3 sec	2 sec	1 min	2 sec	< lsec

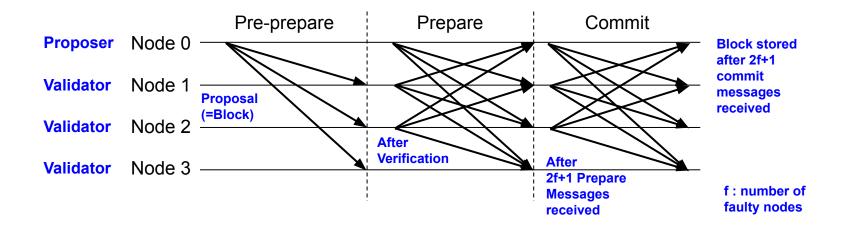
https://www.reddit.com/r/solana/comments/pdxw84/solana_vs_other_blockchain_platforms/ https://support.kraken.com/hc/en-us/articles/203325283-Cryptocurrency-deposit-processing-times

Klaytn's Consensus Algorithm

Problems of PoW or PoS

Inconsistent block generation time Chain fork and reorg Probabilistic finality

Use PBFT


Klaytn's Consensus

Fast block generation time Instant finality Energy efficiency

klaytn Copyright © Klaytn. All rights reserved.

PBFT (Practical Byzantine Fault Tolerant) Consensus

- # of faulty nodes should be smaller than $\frac{1}{3}$ of all nodes.
- # of message for N nodes => O(N^2)
- On consensus, immediate finality is guaranteed

How Klaytn's Consensus Overcomes PBFT's Weakness

Finality

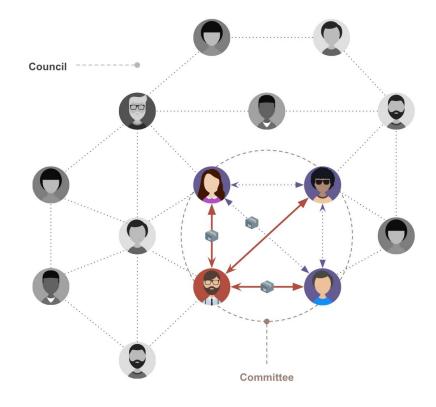
Strong consistency guarantee

\rightarrow 1-second Finality

Scalability

O(n²) communication complexity O(n) verification complexity

- → Committee Selection
- \rightarrow Committee Selection

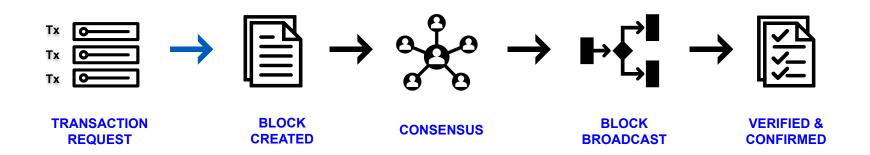

Sybil attack

Create multiple pseudonymous identities to subvert the 3f + 1 of PBFT \rightarrow Permissioned Council

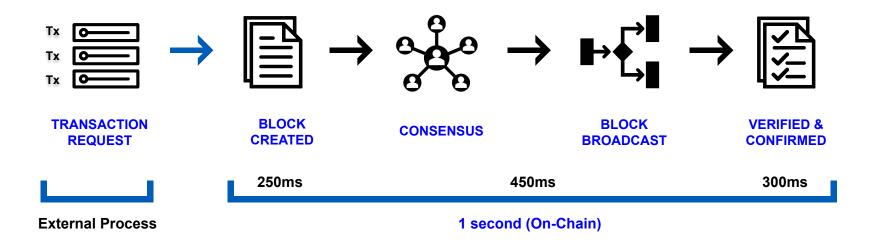
Klaytn's Securely Scalable BFT

- Trustful node operators form a network called **Governance Council (GC)**
- For each block, Klaytn randomly selects a subset of the council; we call this subset a Committee
- Klaytn runs IBFT on a chosen Committee to achieve fast, efficient consensus

How to Secure Consensus Nodes in Open Network?

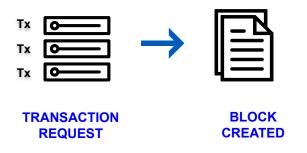

Cypress Network Architecture

- Tiered hybrid networks with role-based node types for fast and secure block generation
 - **Permissioned** Consensus Node Network (CNN)
 - Block generation and validation
 - Implemented securely scalable BFT
 - **Permissioned** Proxy Node Network (PNN)
 - Propagate txs from EN to CN
 - Propagate blocks from CN to EN
 - *Permissionless* Endpoint Node Network (ENN)
 - Provide API for users/services
 - Propagate txs to PN and receive results


Cypress Network Architecture

From Transaction Request to Block Confirmation

Klaytn Copyright © Klaytn. All rights reserved.


1-Second Block Interval

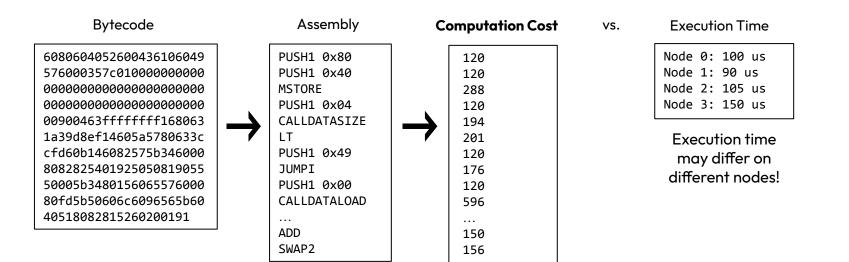
Block Creation and Verification

Create a block within 250 ms

- When creating a block, the time taken for validation and execution of all transactions in the block should be smaller than 250 ms.
- Block validation is very similar to block creation.

Challenges

- How can we limit the execution time of a single transaction?
- How many transactions can be included in a block to meet the time restriction of 250 ms?

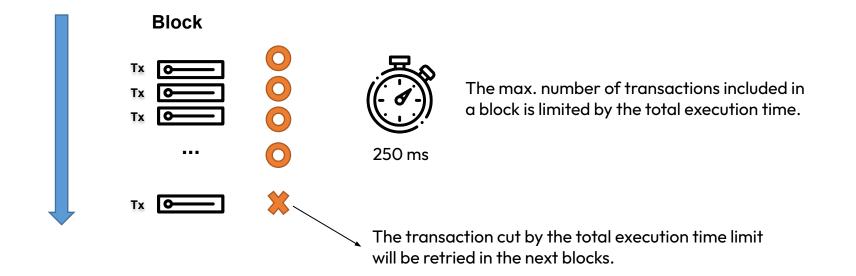

klaytn Copyright © Klaytn. All rights reserved.

Limit the Transaction Execution Time (I)

Limit the execution time of a single transaction by its computation cost

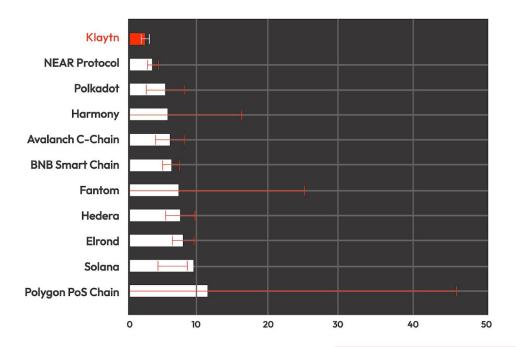
Nodes cannot make a consensus on time.

Need a value that is deterministic and verifiable

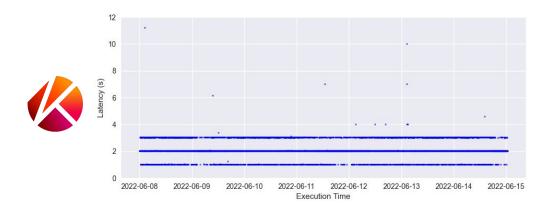

Define computation cost for each opcode and set the limit for the sum of computation costs for all opcodes.

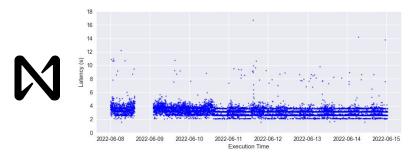
* <u>https://docs.klaytn.foundation/content/klaytn/design/computation/computation-cost</u>

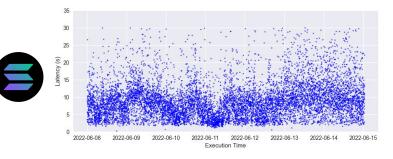
Limit the Transaction Execution Time (II)


Limit the execution time of all transactions in a block by timer

Only Block Time is Important?

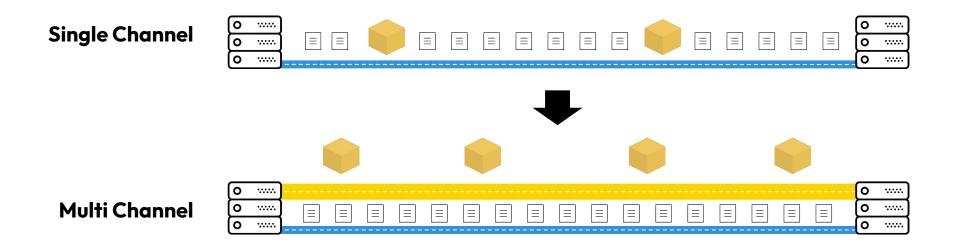

For better UX, the transaction latency is more important!




klaytn Copyright © Klaytn. All rights reserved.

Source: Klaytn's Comparison of Blockchain Network Latencies

The Stability of Transaction Latency is also Important!



Source: Klaytn's Comparison of Blockchain Network Latencies

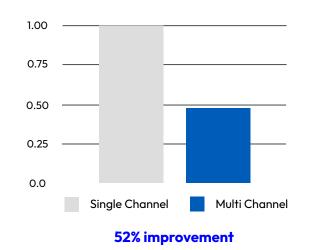
Block Propagation - Single Channel vs. Multi Channel

To **ensure on-time latency** even though transaction congestions, Klaytn network provides a **separate channel** for block dissemination

Block Propagation - Evaluation

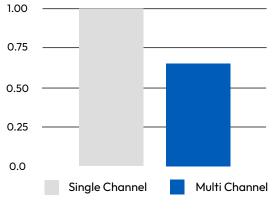
Evaluate performance of using multi-channel on block propagation

Experimental setup


- Network
 - CNs: 7 x AWS EC2 c5.4xlarge
 - PNs: 4 x AWS EC2 c4.2xlarge
 - ENs: 10 x AWS EC2 c4.2xlarge
- Test scenario
 - \circ 10 users send KLAY transfer transactions to EN as many as possible

Performance metrics

- Std. dev. of block propagation latency
 - Measure the time when EN receives a new block
- Transaction-to-receipt time
 - Measure the time from a transaction is broadcasted to the receipt is available


Block Propagation - Evaluation

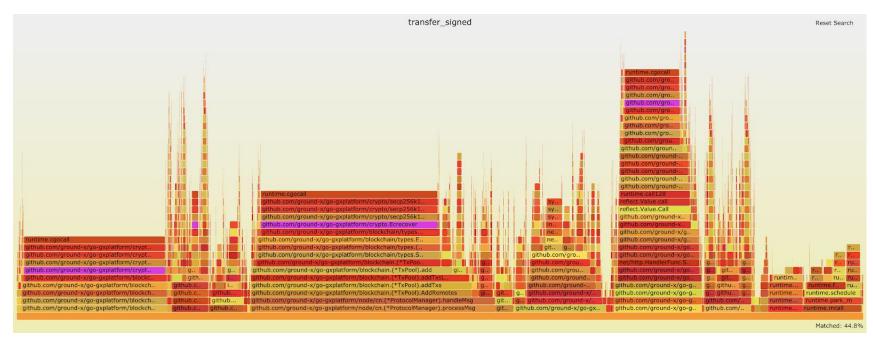
Evaluate performance of using multi-channel on block propagation

Normalized Std.Dev. of Block Transfer Latency

Normalized Transaction-to-Receipt Time

32% improvement

How to Increase TPS (Transactions per Second)?


Key is **PARALLELIZATION**!

Parallelizing Compute-Intensive Tasks	Isolating Network Resources
Limiting Concurrency with a Worker Pool	Utilizing Fine-Grained Locking

Analyze Performance Bottlenecks in Block Creation/Verification

Find most time-consuming parts via execution time profiling

crypto.Ecrecover takes the largest portion in the execution time on KLAY transfer transaction.

Klaytn Copyright © Klaytn. All rights reserved.

Parallel Signature Verifications

Sequential Signature Verifications

Loading.....

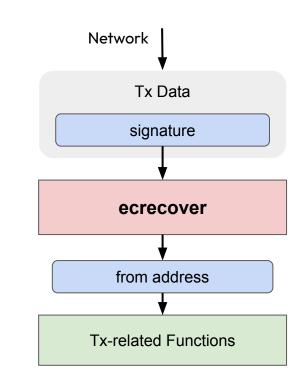
Parallel Signature Verifications

Klaytn Copyright © Klaytn. All rights reserved.

Parallel Execution of Transactions

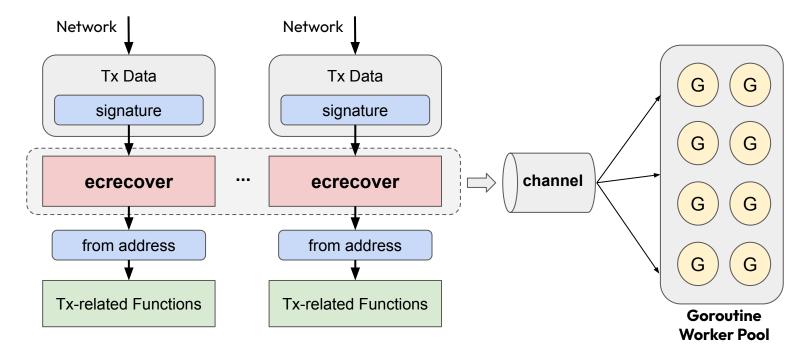
Parallelize independent ECDSA recovery computations

Situation


- Transaction data contains sender's signature
- Sender's address has to be derived from the signature using ECDSA recovery function
 - To invoke transaction-related functions

Problems

- Calculating the address from a signature is compute-intensive
- Need to calculate all addresses from all transactions


Parallelization

- Create a goroutine worker pool that executes ECDSA recovery functions
- Request executing the ECDSA recovery function for all transactions to the worker pool

Parallel Execution of Transactions

Parallelize independent ECDSA recovery computations

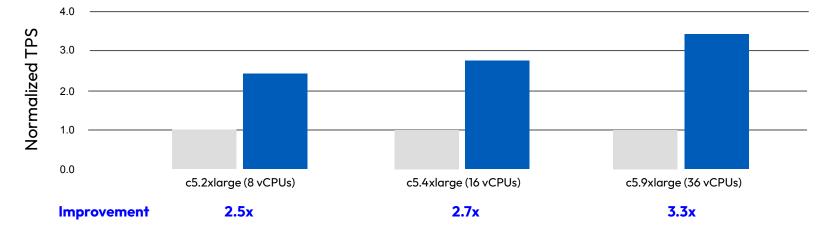
klaytn Copyright © Klaytn. All rights reserved.

Parallel Execution of Transactions - Evaluation

Experiment on multicore machines by varying # of cores

Experimental setup

- Hardware
 - AWS EC2 c5.2xlarge (Intel Xeon Platinum 8124M CPU @ 3.00GHz, 8 vCPUs)
 - AWS EC2 c5.4xlarge (Intel Xeon Platinum 8124M CPU @ 3.00GHz, 16 vCPUs)
 - AWS EC2 c5.9xlarge (Intel Xeon Platinum 8124M CPU @ 3.00GHz, 36 vCPUs)
- Test scenario
 - 20 users send KLAY transfer transactions to Klaytn nodes as many as possible


Parallel Execution of Transactions - Evaluation

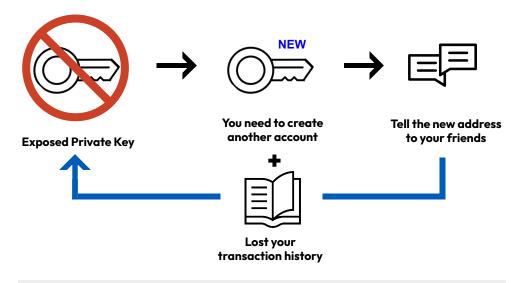
Experiment on multicore machines by varying # of cores

Normalized TPS of Value Transfer Transactions

Before Parallelization

After Parallelization

Challenges on UX & DX

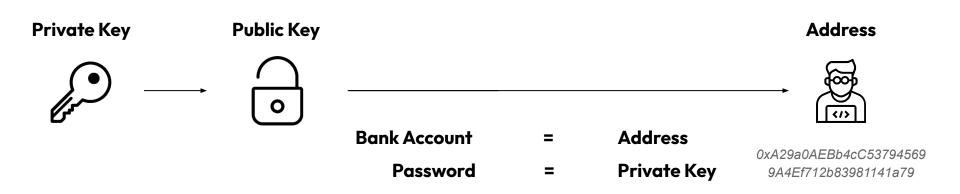


Copyright © Klaytn. All rights researed.

Problem: Exposed Private Key

What if your private key is exposed?

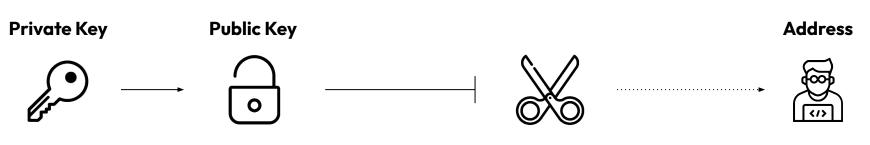
Address = Bank account number | Private key = Password


Solution: make private key changeable

Klaytn Account Model: Decouple Private Key and Address

Klaytn satisfies user's real-life digital ID needs,

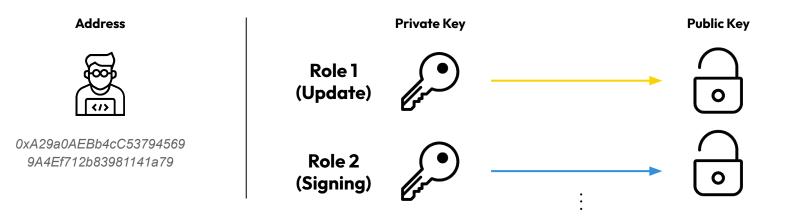
natively supporting multiple keys and flexible key management



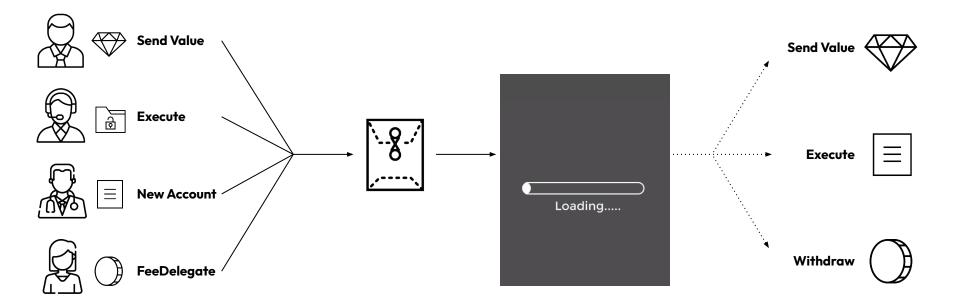
Klaytn Account Model: Decouple Private Key and Address

Klaytn satisfies user's real-life digital ID needs,

natively supporting multiple keys and flexible key management

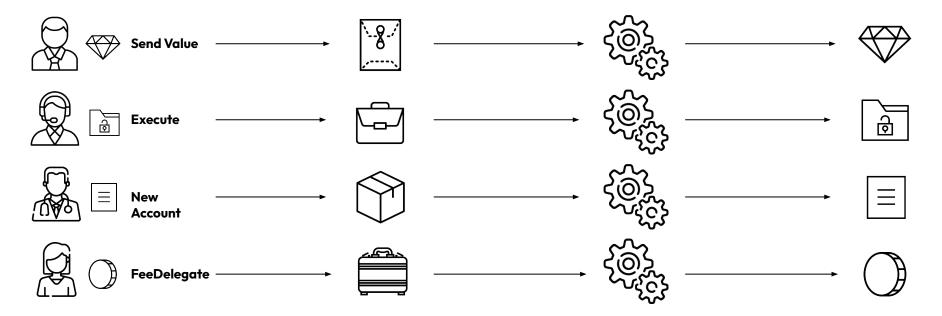


0xA29a0AEBb4cC53794569 9A4Ef712b83981141a79


Klaytn Account Model for Better Security

Klaytn's account with role-based keys improves security.

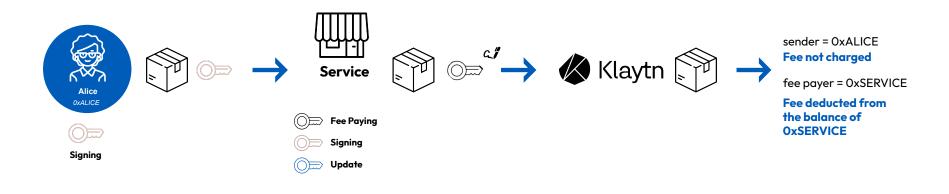
Traditional Transaction


When handling traditional transactions, **one size does NOT fit all** - uniform handling leads to big waste of time

Klaytn Transaction Model

Klaytn has efficiently yet securely **expanded** its **native transaction types**, providing better developer experience and business logic opportunities

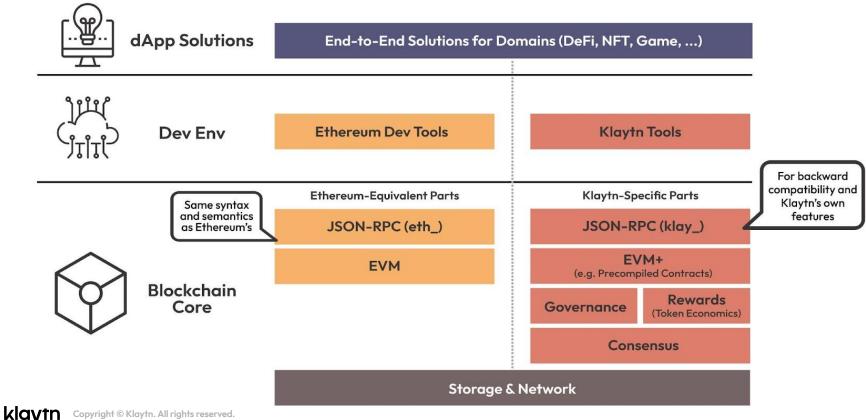
User Adoption Obstacle - Gas Fee



Sending a TX costs gas fee; no exception

Discourages User Adoption and Engagement

Fee Delegation via Fee Delegated Transaction and Fee Paying Role Key


- Klaytn allows anyone to pay gas fees on other users' behalf
- Fee delegation is done by adding additional signature to sender's TX with fee delegated transaction types

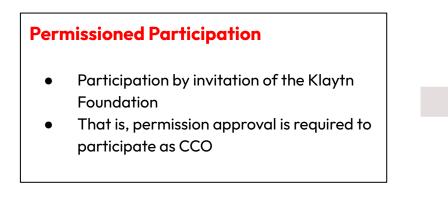
DX: Can Developers Use Familiar Tools on Klaytn?

Supporting Ethereum Equivalence on Klaytn

Providing an Open-source Development Suite

Enjoy seamless and simplified building with Klaytn's Metaverse Package

Challenges on Decentralization




Copyright © Klaytn. All rights reserved.

How to Make Validators Permissionless in BFT?

Change direction in how to participate as a validator (a.k.a, Core Cell Operator or CCO) in Klaytn

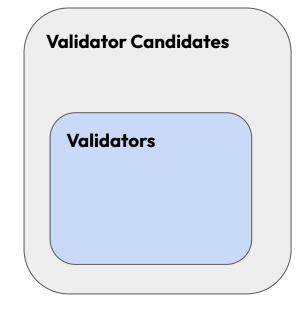
ightarrow For more nodes to freely participate as validators

 No permission approval is required for participation

Klaytn Copyright © Klaytn. All rights reserved

Technical Challenges for Permissionless Validators

Validator Candidate Selection Mechanism


- The number of validator candidates
- Criteria for validator candidates
- Selection cycle of validator candidates

Validator Selection Mechanism

- The number of validators
 - Depending on the scalability of consensus algorithm
- Criteria for validators
- Selection cycles of validators

Network Security & Stability

- A systematic way of entering/leaving validators while preserving the network security
 - Need to prevent DoS attack, IP spoofing, hacking, etc.
- A mechanism to replace malfunctioning or underperforming validators while keeping the network stability

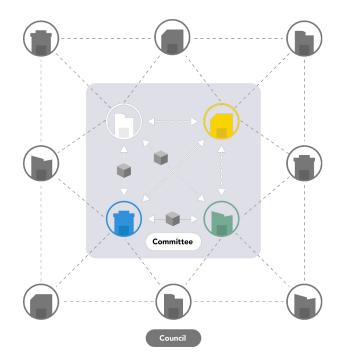
Architectural Decentralization

How many physical computers is a system made up of?

How many of those computers can it tolerate breaking down at any single time?

The number of nodes participating in consensus should increase

https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274


Technical Challenges for Architectural Decentralization

Message Complexity

• If there are more consensus nodes (validators), the message for consensus increases to O(N^2).


Needs a way to limit the number of messages even if the number of nodes is increased

- Optimize the consensus algorithm
 - Devise ways to reduce messages in the consensus process
- Limit the number of nodes participating in consensus
 - Reduce the consensus message by choosing only a fraction of all nodes to participate in the consensus process
 - Council vs. Committee
 - Validator Candidate Set vs. Validator Set

Technical Challenges for Architectural Decentralization

Physical network latency affects the distribution of validators

This online tool estimates the network latency from your browser to Amazon Web Services (AWS) EC2 data centers around the world.

Latency tests conducted on 4G network may not be acurate.

CloudFront CDN Edge Location: ICN54-C2

Amazon Web Services HTTP Ping

	Region	Latency (ms)
	Seoul ap-northeast-2	22.4
	CloudFront CDN	23.6
	Osaka ap-northeast-3	45.4
	Hong Kong ap-east-1	52.6
	Tokyo ap-northeast-1	53.6
	Beijing cn-north-1	62.8
	Ningxia cn-northwest-1	86.4
	Singapore ap-southeast-1	91.8
	Jakarta ap-southeast-3	107.8
	Sydney ap-southeast-2	157
	Oregon us-west-2	159.2
	N. California us-west-1	163.6
	Ohio us-east-2	182.2
	Canada Central ca-central-1	193.8
	N. Virginia us-east-1	204
	London eu-west-2	263.6

From Seoul

AWS Cloud Ping Speed Test

This online tool estimates the network latency from your browser to Amazon Web Services (AWS) EC2 data centers around the world.

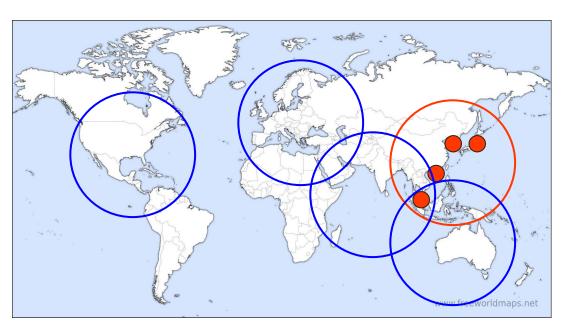
Latency tests conducted on 4G network may not be acurate.

CloudFront CDN Edge Location: SIN2-P1

Amazon Web Services HTTP Ping

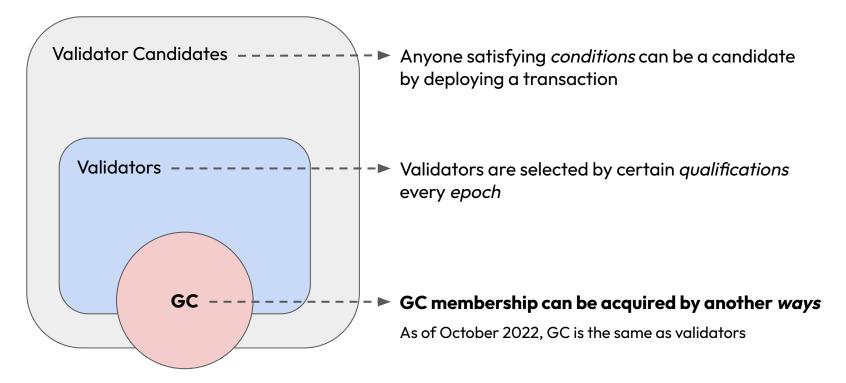
	Region	Latency (ms)
	Singapore ap-southeast-1	12.8
	CloudFront CDN	14.2
	Jakarta ap-southeast-3	25.6
	Hong Kong ap-east-1	48.8
	Mumbai ap-south-1	76.8
	Osaka ap-northeast-3	83.6
	Seoul ap-northeast-2	87.6
	Tokyo ap-northeast-1	91
	Sydney ap-southeast-2	104.6
	Beijing cn-north-1	105.4
	Ningxia cn-northwest-1	110
	N. California us-west-1	190.8
	Oregon us-west-2	214.4
	Ohio us-east-2	248.6
	N. Virginia us-east-1	252

From Singapore

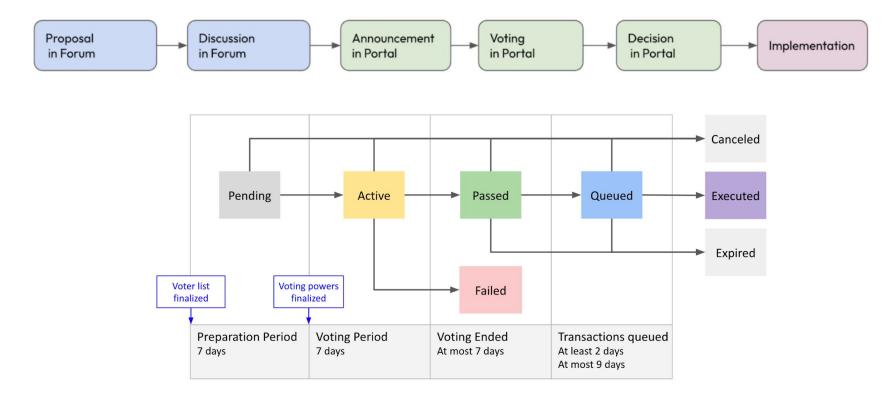

Technical Challenges for Architectural Decentralization

Resolve regional restrictions due to 1-second block time

[Present] Validators are distributed in Asia


[Future] Globally distribute validators by solving regional constraints

Need validator selection technology in consideration of regional latency


Distribution of Klaytn Validators

Governance Council with Permissionless Validators

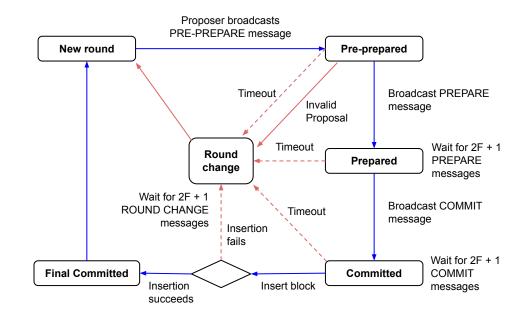
Governance On-Chain Voting Process

klaytn Copyright © Klaytn. All rights reserved.

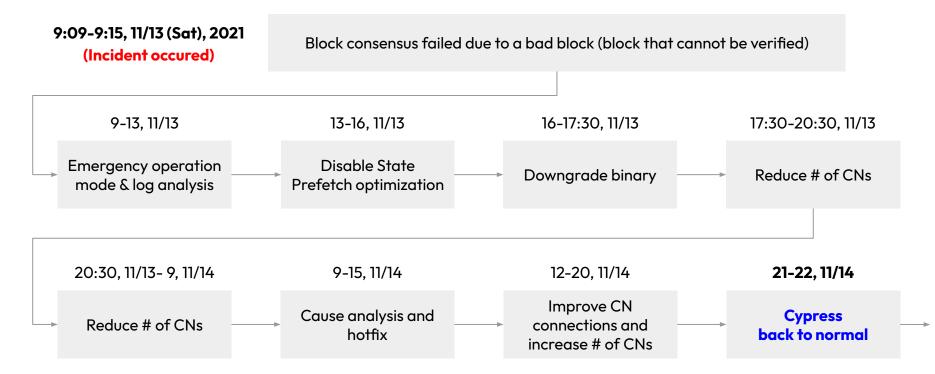
Challenges on Network Operation

Copyright © Klaytn. All rights reserved.

Network Monitoring & Incident Response

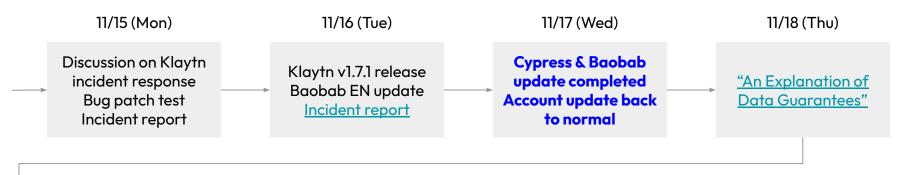


Scope of Network Operation


- Infrastructure (bare metal, cloud) setup & maintenance
- Automation, monitoring, dashboard, incident response, communication system, etc.

Round Change (View Change)

- Round Change occurs when a waiting operation is not completed due to some problem
 - The proposer does not propose a block OR
 - If more than ²/₃ of PREPARE or COMMIT messages are not received
- In this case, the next proposer proposes a block
- It is a factor that delays the speed of the network and must be quickly restored when it occurs

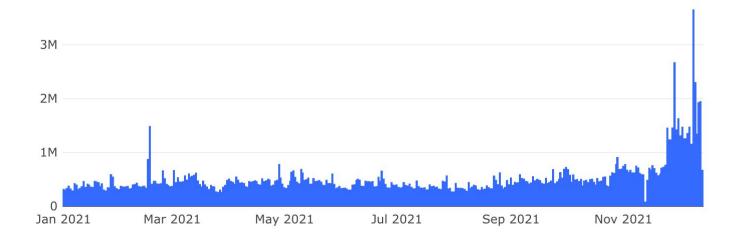



Incident Example: Block Generation Failure on Klaytn Mainnet (Cypress) of Nov. 13th, 2021

65

Incident Example: Block Generation Failure on Klaytn Mainnet (Cypress) of Nov. 13th, 2021

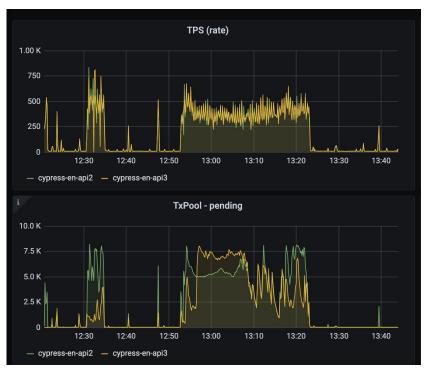
Klaytn Copyright © Klaytn. All rights reserved.


Lessons Learned from Incident on Nov. 13th, 2021

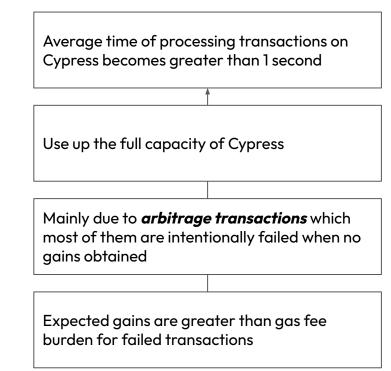
- 1. Incidents can occur at any time, so it is necessary to quickly recognize and respond to them.
- 2. Incident response process should be in place and all involved should be aware of it.
- 3. Incident response training must be conducted regularly.
- 4. Klaytn's development manpower needs to be rapidly increased.
- 5. There must be a team dedicated to network (mainnet) operation.
- 6. There should be external people who understand Klaytn's code and network operations.
- 7. There should be a way to go into emergency recovery mode.

Arbitrage Bot Transaction Issue

Cypress Daily Transaction: Clear trend of Klaytn network usage increase

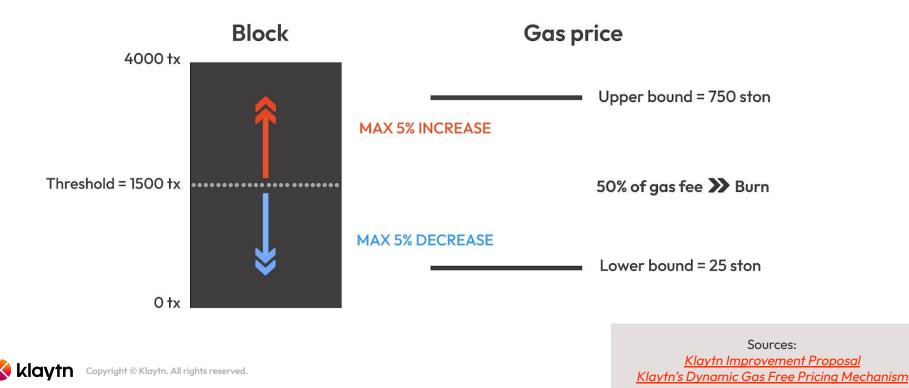


Now to assess Klaytn's gas fee policy to support fair and efficient network usage



Arbitrage Bot Transaction Issue (cont'd)

Recent Trend of Bursty Transactions (Getting worse!)



Issue and Root Cause

Dynamic Gas Fee Pricing Model

Enjoy cheap gas price usually. Pay more only when the network is congested.

What's Next?

Lessons Learned from Mainnet Development & Operation

Good Points

- It means a lot to pioneer a new development or career path that no one else has gone before.
- It is rewarding to solve difficult problems and develop good technology that many people can use.
- It is fun to solve various factors such as values, performance, and constraints in reality all together.

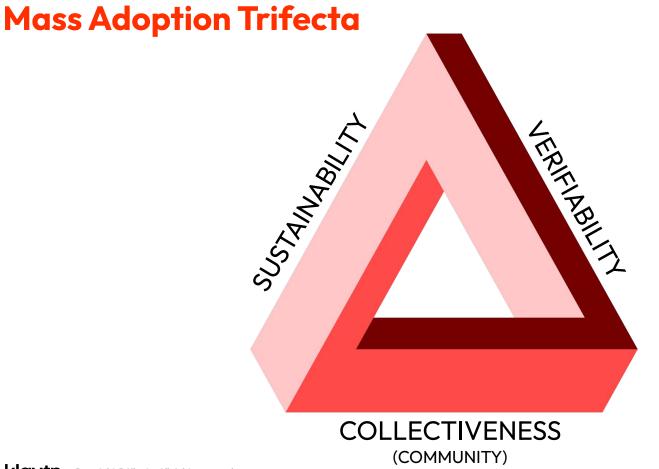
Challenges

- It is technically very difficult to keep evolving a nondisruptive distributed system.
- It is difficult to find people who are interested in or suitable for mainnet development.
- Mainnet development is not so visible to the public.
- It's not very noticeable if we're good at it, but if we're not good at it, there's a lot of critics.
 - In particular, if a failure occurs in the mainnet, the aftermath could be large and a big problem.

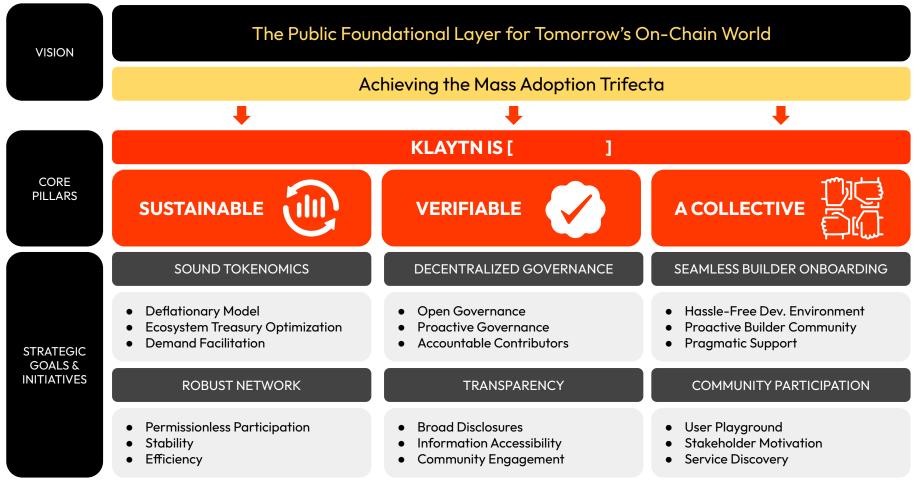
Try the Mainnet Development

Mainnet development is a challenge for people who are serious about technology development.

If you are a person who digs into problems, likes systems, and enjoys helping others develop better, you may take on the challenge of the mainnet development.


Problems that Klaytn Encountered and Have to Solve

Low Market Penetration


Sustainability Issues

Trust Issues

klaytn Copyright © Klaytn. All rights reserved.

성 klaytn

Thank you for your attention!

\rm klaytn