
Blockchain Technology: Advanced
March 22, 2023

Min Suk Kang
Assistant Professor

School of Computing/Graduate School of
Information Security

Two parts

• Part I: Blockchain Technology: Advanced (L1/L2, ZKP, Sharding, etc)
• by Min Suk Kang (SoC, KAIST)

• Part II: How complicated it is to build a blockchain platform
• by Sangmin Seo (Director, Klaytn Foundation)

2

Recap: Blockchain 101

3

Don’t worry!
You can develop Web3 apps without becoming a

blockchain guru.
You just need to understand some characteristics

of underlying blockchain systems.

Blockchain 101 lecture was very hard to follow…
as I have zero background…

Can I survive?

What is a blockchain?

Abstract answer: a blockchain provides
coordination between many parties,
when there is no single trusted party

if trusted party exists ⇒ no need for a blockchain

[financial systems: often no trusted party]

Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

• A practical public append-only data structure,
secured by replication and incentives

• A fixed supply asset (BTC). Digital payments, and more.

Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

• Blockchain computer: a fully programmable environment
⟹ public programs that manage digital and financial assets

• Composability: applications running on chain can call each other

2015

Ethereum

Blockchains: what is the new idea?

2009

Bitcoin

2015

Ethereum growth of
DeFi, NFTs, DAOs

2017 2022

Bitcoin as a state transition system

UTXO1
UTXO2

⋮

world state

…
UTXO1
UTXO3

⋮

updated world state

…input

Tx: UTXO2⇾ UTXO3

Fbitcoin : S × I ⇾ S

S: set of all possible world states, s0 ∈ S genesis state
I: set of all possible inputs

Bitcoin rules:

Ethereum as a state transition system

Much richer state transition functions

⇒ one transition executes an entire program

Ethereum
world state

…

updated Ethereum
world state

…input

Tx

Running a program on a blockchain (DAPP)

consensus layer (beacon chain)

compute layer (execution chain): The EVM

state0

program code

… blockchain …

state1
Tx1 Tx2 state2

create a DAPP

…

Example Tx

world state (four accounts) updated world state

12

Many desired properties found in blockchains

• Safety: all honest participants have the same data
• Persistence: once added, data can never be removed
• Liveness: honest participants can add new transactions
• dynamic availability
• Censorship resistance

13

Not there yet… though

What about
• Throughput: Lots of transactions per unit

time, and
• Latency: Short timeframe to confirm a

transaction
• Cost: Making transactions is too expensive

14

Can’t we simply increase #txs
per block?

(i.e., produce larger blocks?)

What is Sharding, and why it’s needed?

Sharding

In General:
“Method of splitting and storing a single dataset in multiple databases”

In Blockchain:
“Distributing the set of transactions to partitioned committees,
and process block in a parallel way”

A Secure Sharding Protocol For Open Blockchains

Goal: Scale transaction rates almost linearly with mining power

of Nodes in the Network

TPS

Low

High

Small Large

BFT Protocol

Nakamoto Consensus

Nakamoto Consensus

BFT Protocol
X Open Environments

- rely on Pre-established identities, PKIs
X Scale

- quadratic number of messages
O Fast

- only for small-sized networks

X Scale
- Constant TX rate (3~7 TPS)

O Secure
- PoW for Miners: sybil-resistant

Sharding

A Secure Sharding Protocol For Open Blockchains

Goal: Scale transaction rates almost linearly with mining power

Sharding

PoW BFT
- Generate validator’s Identities
- Works on Permissionless Blockchains
- Assign & Form committees
- Sybil-resistant

- Reaching a parallel consensus by each
committee

- Reaching a consensus for proposing
final block

Our discussion is based on the following paper:
Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of ACM CCS. 2016.

Elastico Protocol in Each Epoch:

1

43

2

PoW

ID,
Committee #i

ID,
Committee #j

Identity Establishment & Committee Formation Overlay Setup for Committees

!

!

Committee #i Committee #j
!

!

Intra-committee Consensus

Committee #i

Committee #j

Shard #i

Shard #j

BFT

BFT

Final Consensus Broadcast

Final
Block

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of ACM CCS. 2016.

Elastico (1) : Identity Setup and Committee Formation

1

PoW

ID,
Committee #i

ID,
Committee #j

Identity Establishment & Committee Formation

ID = H(EpochRandomness||IP||Public Key||Nonce) ≤ 𝟐𝜸"𝑫

∗ 𝜸 : bit length of Hash Output
D: Difficulty

00000010….101

N Processors
K Committees
C Members per Committees

Elastico (1) : Identity Setup and Committee Formation

1

PoW

ID,
Committee #i

ID,
Committee #j

Identity Establishment & Committee Formation

00000010….101
00000010….010
00000011….111
00000011….100

N Processors
K Committees
C Members per Committees

Goals for assigning committees:
ü Fairly distribute the nodes
ü Guarantee at most 1/3 adversary

nodes per committee

⟹ Use last s bits of ID (𝟐𝒔 = 𝑲)

Ex) s=1

Committee #1

Committee #2

00000010….010
00000011….100

00000010….101
00000011….111

Elastico (2) : Overlay Setup for committees

N Processors
K Committees
C Members per Committees

2

Overlay Setup for Committees

!

!

Committee #i Committee #j
!

!

..0

..1..0

..1

??? Naïve Solution?

Elastico (2) : Overlay Setup for committees

N Processors
K Committees
C Members per Committees

2

Overlay Setup for Committees

!

!

Committee #i Committee #j
!

!

..0

..1..0

..1

Naïve Solution:
ü Broadcast its identity to everyone

⟹ quadratic messages.. O(𝑵𝟐)

Elastico (2) : Overlay Setup for committees

N Processors
K Committees
C Members per Committees

2

Overlay Setup for Committees

!

!

Committee #i Committee #j
!

!

Better Solution:
ü Use Directory Committees
ü First C identities become Directory

Committees
ü Latter nodes send IDs to Directories
ü Directories send committee list

once each has ≥ C members

⟹ O(NC)

*Directory committees broadcast its identity to
all Directory committee members.

Elastico (3) : Intra-committee Consensus

10101010….101
00100110….010
01010011….111
10000011….100

N Processors
K Committees
C Members per Committees

All committees propose disjoint shards:
ü Each committee works on a separate

transactions based on their ID

⟹ Use first s bits of TXID

Ex) s=1
TXID

Committee #1

Committee #2

…10
…00

…01
…11

3

Intra-committee Consensus

Committee #i

Committee #j

Shard #i

Shard #j

BFT

BFT

ID

ID

00…
01…

10…
10…

TXID

TXID

Elastico (3) : Intra-committee Consensus

N Processors
K Committees
C Members per Committees

3

Intra-committee Consensus

Committee #i

Committee #j

Shard #i

Shard #j

BFT

BFT

Committee #i
Proposer!

Run BFT Protocols
Mempool

Agree on set of TXs (shard)

001..
010..
011..

001..
010..
011..

Elastico (4) : Final Consensus Broadcast

N Processors
K Committees
C Members per Committees

4

Final Consensus Broadcast

Final
Block

Data Block #1 (Header)

Data Block #K (Header)

Data Block #2 (Header)
Final Committee

Proposer!

Ordered Set Union
of Valid headers

>c/2+1 sign

BFT

Agree on set of Valid Headers
Of Data Blocks

001..
010..
011..

Elastico (4) : Final Consensus Broadcast

Consensus
block i-1

Consensus
block i

Consensus
block i+1

Data block 1

Data block 2

Data block 3

i th epoch

Each Epoch ends when:
ü Once the consensus block i is shared by

final committee to all members in the
network, it is added to the blockchain.

ü Each step process repeats in the next
epoch i+1.

ü Broadcast S along with consensus block.

Elastico (4) : Final Consensus Broadcast

Consensus
block i-1

Consensus
block i

Consensus
block i+1

Data block 1

Data block 2

Data block 3

i th epoch

In the next epoch:
ü Once the consensus block i is shared by

final committee to all members in the
network, it is added to the blockchain.

ü Each step process repeats in the next
epoch i+1.

ü Broadcast S along with consensus block.

i+1 th epoch

011..
100..
110..

S

New node who wants to join

H(𝑅!)
H(𝑅")
H(𝑅#)

EpochRandomness = H(𝑅$)⨁ H(𝑅%)⨁ H(𝑅&)⨁…⨁ H(𝑅')
XOR c/2 + 1 H(𝑅()s

Reveal Ri

Results

100 Members per Committees

Limitations of Sharding

• Cross-shard consensus
• Reduced composability
• New security risks

30

Scaling blockchains

• Sharding: parallelize blockchain network
• Payment channel: try not to touch blockchain (except when

necessary)
• Rollups: post only summary of tx/contract executions to

blockchain

31

Payment Channels: Initiating

Alice Bob

Layer 1

Layer 2
Lightning Network.

Main-net.

Step 1: Make connections in LN.

Alice Bob

Step 2: Open channel via Funding transaction.

Alice Bob

A&B Y BTCX BTC
X+Y BTC

TX on-chain.

Payment Channels: Multi-hop payments (HTLC)

Alice

Bob

Carol

Alice wants to send Carol 1 BTC via Bob:

Generate
Random Key R &&

H = Hash(R)
H

HTLC: 1 BTC
Bob && R OR
Alice && 17:00

HTLC: 1 BTC
Carol && R OR
Bob && 16:00

Reveal R, clear HTLCReveal R, clear HTLC

*Hash Time Lock Contracts

Limitations of payment channels

• User assets should be locked up
• Mainly designed for payments but not for contracts

34

Scaling blockchains

• Sharding: parallelize blockchain network
• Payment channel: try not to touch blockchain (except when

necessary)
• Rollups: post only summary of tx/contract executions to

blockchain

35

(some slides from Dan Boneh)

Kalodner, Harry, et al. "Arbitrum: Scalable, private smart contracts." in Proceedings of USENIX Security, 2018.

Basic layer-1 blockchain
A layer-1 blockchain

(e.g., Ethereum)

current world state

updated world state

updated world state

TxA

TxB

⋮
World state: balances, storage, etc.

Can handle 15 Tx/sec …

Rollup idea 1: batch many Tx into one
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

TxA

TxB

Rollup
coordinator

TxC Rollup state:
Alice’s balance
Bob’s balance
…

updated Rollup state root, and Tx list

(Tx list)

Rollup idea 1: batch many Tx into one
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

Key point:

• Hundreds of transactions
on Rollup state are batched into
a single transaction on layer-1

⇒ 100x speed up in Tx/sec

Rollup state:
Alice’s balance
Bob’s balance
…

(Tx list)

Two potential problems of rollup
Problem 1: what if coordinator is dishonest?
• It could steal funds from the Rollup contract
• It could issue fake Tx on behalf of users

Problem 2: what if coordinator stops providing service?
• If Rollup state is lost, how can we initialize a new coordinator?

Handling dishonest coordinators

• Idea 1: Let multiple coordinators disagree and present a
proof of fraud
• If all the coordinators output the same contract execution =>

unanimous agreement => L1 chain processes immediately
• If no unanimous agreement => at least one coordinator challenges
• Through interactions between coordinators, a concise fraud proof is

sent to L1 chain => L1 checks one computation step
• Lier’s stake will be slashed

• Dispute resolution period: typically 7 days

40

a.k.a. optimistic rollup

Handling dishonest coordinators

• Idea 2: Let coordinators provide proof of validity
• Coordinator processes all tx and outputs succinct proof that

proves that a batch of hundreds of tx is valid
• L1 efficiently verifies the validity proof and accepts it

41

a.k.a. zk-rollup

Verifying Rollup state updates

TxA

TxB

Rollup
coordinator

Layer 1 blockchain
(e.g. Ethereum)

Rollup contract
updated

state
root

SNARK
proof of
valid Tx

Tx list

accept new root
only if valid proof

Succinct proof proves that a
batch of hundreds of Tx is valid

What the SNARK proof proves
SNARK proof is short and fast to verify:

⇒ Cheap to verify proof on the slow L1 chain (with EVM support)

Public statement: (old state root, new state root, Tx list)
Witness: (state of each touched account pre- and post- batch,

Merkle proofs for touched accounts, user sigs)
SNARK proof proves that:

(1) all user sigs on Tx are valid, (2) all Merkle proofs are valid,
(3) post-state is the result of applying Tx list to pre-state

The end result
Rollup contract on L1 ensures coordinator cannot cheat:

• all submitted Tx must have been properly signed by users

• all state updates are valid

⇒ Rollup contract on L1 will accept any update with a valid proof

⇒ Producing validity proof (zkSNARK proof) is expensive though

Two potential problems of rollup
Problem 1: what if coordinator is dishonest?
• It could steal funds from the Rollup contract
• It could issue fake Tx on behalf of users

Problem 2: what if coordinator stops providing service?
• If Rollup state is lost, how can we initialize a new coordinator?

Optimistic rollup or
zk-rollup

Data availability
committee

What’s next?

• Remaining issues
• Mature rollup technologies?
• Censorship in rollups?
• L3?
• …

46

Two parts

• Part I: Blockchain Technology: Advanced (L1/L2, ZKP, Sharding, etc)
• by Min Suk Kang (SoC, KAIST)

• Part II: How complicated it is to build a blockchain platform
• by Sangmin Seo (Director, Klaytn Foundation)

47

After the break…

