

Building Web3 Apps to Solve Real Problems

Building Web3 & Blockchain Applications (CS492 Special Topics in Computer Science) Spring 2023

Blockchain 101: Bitcoin

Lecture 3 (2023-03-15)

Min Suk Kang

Assistant Professor School of Computing/Graduate School of Information Security

Logistics

- 2:30 hr lecture (we'll end by 6:30pm)
- Short (3-min?) bathroom break in the middle

Min Suk Kang (https://netsp.kaist.ac.kr)

- Assistant Prof., School of Computing, KAIST (Since Aug 2020)
- Assistant Prof., School of Computing, NUS (2016-2020)
- Ph.D. ECE, Carnegie Mellon Univ (2016)
- MS & BS, EE, KAIST, South Korea (2008 & 2006)

List of blockchain research projects:

- Partitioning Bitcoin peer-to-peer networks
- Guaranteeing partition-resistant blockchain p2p
- Low-cost eclipse attacks in Ethereum
- Mixing Bitcoin transactions for better privacy
- Discovering consensus bugs in Bitcoin and Ethereum
- Enforcing network service guarantees for public blockchains

•

. . .

Web3 Stack (in the view of data)

(from Jason's lecture slides)

4

Why blockchain? What about Web3 without blockchain?

Agenda

- Digital currency
 - Why is it hard?
 - What properties should we achieve?
- Nakamoto consensus
 - How Bitcoin solved it?
- Ethereum as the world computer
 - Smart contracts
 - Proof of stake
- What's more? (next week)

Many slides borrowed from good researchers Prateek Saxena, Dan Boneh, Ertem Nusret Tas

Online Transactions

- Physical cash
 - Non-traceable (well, mostly!)
 - Secure (mostly)
 - Low inflation
- Can't be used online directly
- Electronic credit or debit transactions
 - Bank sees all transactions
 - Merchants can track/profile customers

E-Cash

- Secure
 - Single use
 - Reliable
- Low inflation
- Privacy-preserving

E-Cash Crypto Protocols

- Brandis95: restricted blind signatures
- & Camenisch05: compact offline e-cash
- Various practical issues:
 - Need for trusted central party
 - Computationally expensive
 - Etc.

Bitcoin

B

- A distributed, decentralized digital currency system
- Released by Satoshi Nakamoto 2008
- Effectively a bank run by an ad hoc network
 - Digital checks
 - A distributed transaction log

Chronology of Ideas in Bitcoin

(Narayanan and Clark)

Self-regulating currency

Alice

Charlie

TX-1: Alice -> Bob TX-2: Bob -> Charlie

TX-1: Bob -> Charlie TX-2: Alice -> Charlie

TX-1: Alice -> Bob TX-2: Alice -> Charlie

Self-regulating currency

Almost a solution

Almost a solution

- Anyone can verify
 - Alice has enough balance
 - She **authorized** a transaction to Bob
 - New balances credit-debited correctly
- E.g., Alice digitally signs "I want to pay Bob \$45"
 - Digital signatures: authenticity and integrity
 - Alice publishes her **<u>public key</u>**
 - Does not need to reveal her real identity
 - Keeps her private key secret

So, what's difficult in Bitcoin-like systems?

- Provide correctness of a distributed append-only ledger (fault-tolerance)
- Prevent censorship of transactions for some users (fairness)

State machine replication (SMR)

Goals of blockchain consensus

• A continuous process... 1 block every 10 minutes

- Transactions are totally ordered in "blocks"
- Blocks are totally ordered in time
 - Anyone can verify their order

Key Challenge: Agreement over Transaction Ordering

Ordering Transactions is sufficient to prevent double spending

What is a blockchain?

Abstract answer: a blockchain provides coordination between many parties, when there is no single trusted party

if trusted party exists \Rightarrow no need for a blockchain

[financial systems: often no trusted party]

Blockchains: what is the new idea?

2009		
Bitcoin		
Several innovations:		
 A practical public append-only data structure, secured by <u>replication</u> and <u>incentives</u> 		
• A fixed supply asset (BTC). Digital payments, and more.		

Blockchains: what is the new idea?

Several innovations:

• Blockchain computer: a fully programmable environment

 \Rightarrow public programs that manage digital and financial assets

• **Composability**: applications running on chain can call each other

Blockchains: what is the new idea?

Consensus layer (informal)

A **public** append-only data structure:

achieved by replication

- **Persistence**: once added, data can never be removed*
- **Safety**: all honest participants have the same data**
- Liveness: honest participants can add new transactions
- **Open(?)**: anyone can add data (no authentication)

Other desired properties

- *Fairness*: Your confirmed blocks are proportional to the computational power you have connected
- Throughput: Lots of transactions per unit time
- Latency: Short timeframe to confirm a transaction
- **Decentralization**: Large # of miners proposing transaction blocks

How are blocks added to chain?

blockchain

How are blocks added to chain?

blockchain

Blockchain systems...

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function $H: M \rightarrow T$ where $|M| \gg |T|$

Collision resistance

<u>Def</u>: a <u>collision</u> for $H: M \to T$ is pair $x \neq y \in M$ s.t. H(x) = H(y)

 $|M| \gg |T|$ implies that <u>many</u> collisions exist

<u>Def</u>: a function $H: M \rightarrow T$ is <u>collision resistant</u> if it is "hard" to find even a single collision for H (we say H is a CRF)

Example: SHA256: $\{x : \text{len}(x) < 2^{64} \text{ bytes}\} \rightarrow \{0,1\}^{256}$

(output is 32 bytes)

[simplified]

commit to list S of size n

• Later prove
$$S[i] = m_i$$

To prove
$$S[4] = m_4$$
 , proof $\pi = (m_3, y_1, y_6)$

length of proof: $\log_2 n$

Signatures

Physical signatures: bind transaction to author

Problem in the digital world:

anyone can copy Bob's signature from one doc to another

Digital signatures

Solution: make signature depend on document

Families of signature schemes

- 1. <u>RSA signatures (old ... not used in blockchains)</u>:
 - long sigs and public keys (≥256 bytes), fast to verify
- 2. <u>Discrete-log signatures</u>: Schnorr and ECDSA (Bitcoin, Ethereum)
 short sigs (48 or 64 bytes) and public key (32 bytes)
- 3. <u>BLS signatures</u>: 48 bytes, aggregatable, easy threshold

(Ethereum 2.0, Chia, Dfinity)

4. <u>Post-quantum</u> signatures: long (≥600 bytes)

Signatures on the blockchain

signatures

signatures

Signatures are used everywhere:

- ensure Tx authorization,
- governance votes,

sk₁

 sk_2

• consensus protocol votes.

data

data

First: overview of the Bitcoin consensus layer

miners broadcast received Tx to the P2P network

every miner: validates received Tx and stores them in its **mempool** (unconfirmed Tx)

note: miners see all Tx before they are posted on chain

Bitcoin P2P network

First: overview of the Bitcoin consensus

Every ≈10 minutes:

- Each miner creates a candidate block from Tx in its mempool
- a "random" miner is selected (how?), and broadcasts its block to P2P network
- all miners validate new block

Bitcoin P2P network

- Selected miner is paid 6.25 BTC in **coinbase Tx** (first Tx in the block)
- only way new BTC is created
- block reward halves every four years \Rightarrow max 21M BTC (currently 19.1M BTC)

note: miner chooses order of Tx in block

Properties (very informal)

Safety / Persistence:

• to remove a block, need to convince 51% of mining power *

Liveness:

 to block a Tx from being posted, need to convince 51% of mining power **

(some sub 50% censorship attacks, such as feather forks)

Bitcoin blockchain: a sequence of block headers, 80 bytes each

Bitcoin blockchain: a sequence of block headers, 80 bytes each

time: time miner assembled the block. Self reported. (block rejected if too far in past or future)

bits: proof of work difficulty **nonce**: proof of work solution

for choosing a leader (next week)

Merkle tree: payer can give a short proof that Tx is in the block

new block every ≈10 minutes.

An example (Sep. 2020)

Height	Mined	Miner	Size	<u>#Tx</u>
648494	17 minutes	Unknown	1,308,663 bytes	1855
648493	20 minutes	SlushPool	1,317,436 bytes	2826
648492	59 minutes	Unknown	1,186,609 bytes	1128
648491	1 hour	Unknown	1,310,554 bytes	2774
648490	1 hour	Unknown	1,145,491 bytes	2075
648489	1 hour	Poolin	1,359,224 bytes	2622

Block 648493

Timestamp	2020-09-15 17:25	
Height	648493	
Miner	SlushPool	(from coinbase Tx)
Number of Transactions	2,826	
Difficulty (D)	17,345,997,805,929.09	(adjusts every two weeks)
Merkle root	350cbb917c918774c93	3e945b960a2b3ac1c8d448c2e67839223bbcf595baff89
Transaction Volume	11256.14250596 BTC	
Block Reward	6.25000000 BTC	
Fee Reward	0.89047154 BTC	(Tx fees given to miner in coinbase Tx)

View the blockchain as a sequence of Tx (append-only)

Tx fees Bitcoin average Tx fees in USD (last 60 days, sep. 2022)

Bitcoin average Tx fees in USD (all time)

All value in Bitcoin is held in UTXOs

Unspent Transaction Outputs

The total number of valid unspent transaction outputs. This excludes invalid UTXOs with opcode OP_RETURN

Sep. 2022: miners need to store ≈85M UTXOs in memory

Bitcoin: Mining

To mine a new block, a miner must find *nonce* such that

 $H(h_{prev}, txn root, nonce) < \text{Target} = \frac{2^{256}}{D}$

Difficulty: How many nonces on average miners try until finding a block?

Each miner tries different nonces until one of them finds a nonce that satisfies the above equation.

Bitcoin: Block Headers

Bitcoin: Difficulty Adjustment

New target is not allowed to be more than 4x old target. New target is not allowed to be less than ¼ x old target.

Nakamoto Consensus

Chain with the highest difficulty!

Bitcoin uses Nakamoto consensus:

- Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> (longest for us) chain in its view (Ties broken adversarially).
- **Confirmation rule:** Each miner confirms the block (along with its prefix) that is *k*-deep within the longest chain in its view.
 - In practice, k = 6.
 - Miners and clients accept the transactions in the latest confirmed block and its prefix <u>as their log</u>.
 - Note that *confirmation* is **different** from *finalization*.
- Leader selection rule: Proof-of-Work.

Nakamoto Consensus

Confirmed

Consensus in the Internet Setting

Characterized by *open participation*:

- Adversary can create many Sybil nodes to take over the protocol.
- Honest participants can come and go at will.

Goals:

- Limit adversary's participation.
 - Sybil resistance (e.g., Proof-of-Work)!
- Maintain availability (liveness) of the protocol against changing participation by the honest nodes.
 - Dynamic availability!

Can we show that Bitcoin is <u>secure</u> under <u>synchrony</u> against a <u>Byzantine</u> <u>adversary</u>?

What would be the best possible resilience?

A Peer-to-Peer Electronic Cash System (2008)

Multiple honest blocks at the same height due to network delay. Adversary's chain grows at rate proportional to (shown by \propto) β ! Honest miners' chain grows at rate less than $1 - \beta$ because of forking! Now, adversary succeeds if $\beta \ge \frac{(1-\beta)}{2}$, which implies $\beta \ge \frac{1}{2}!!$

Security of Bitcoin against other attacks

Kiffer, Lucianna, Rajmohan Rajaraman, and Abhi Shelat. "A better method to analyze blockchain consistency." *Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security*. 2018.

Peer-to-Peer Communication Network

- Decentralized, permissionless peer-to-peer broadcast network used to announce new transactions and proposed blocks
- Requirements
 - low latency
 - 10 minute block creation time handles latency issues
 - robust against malicious miners
 - e.g., censor transactions
- Network topology and discovery
 - Bitcoin: 8 outgoing, 117 incoming connections
- Communication protocol
 - Flooding new blocks and pending transactions

Extended Bitcoin network

Various types of nodes in Bitcoin

В

Reference Client (Bitcoin Core)

Contains a Wallet, Miner, full Blockchain database, and Network routing node on the bitcoin P2P network.

Full Block Chain Node

Contains a full Blockchain database, and Network routing node on the bitcoin P2P network.

Miner В N.

N

Solo Miner

Contains a mining function with a full copy of the blockchain and a bitcoin P2P network routing node.

Wallet

Statum

Contain a mining function, without a blockchain, with the Stratum protocol node (S) or other pool (P) mining protocol node.

Lightweight (SPV) Stratum wallet

Contains a Wallet and a Network node on the Stratum protocol, without a blockchain.

Lightweight (SPV) wallet

Contains a Wallet and a Network node on the bitcoin P2P protocol, without a blockchain.

Pool Protocol Servers

Gateway routers connecting the bitcoin P2P network to nodes running other protocols such as pool mining nodes or Stratum nodes.

Mining Nodes

Large peer-to-peer network

Reachable nodes

16359

10370 Average

Since 7 years ago

NODES

Chart shows the number of reachable Bitcoin nodes during the last 7 years. Series can be enabled or disabled from the legend to view the chart for specific networks.

8793 ▲ 116.22%

Lo 5176 Hi 16359 Avg 10370 Last 16359 nodes

24h

90d

1y

7y

Is Bitcoin the Endgame?

- Bitcoin provides Sybil resistance and dynamic availability.
- It can be made secure for any $\beta < \frac{1}{2}$.
- Is it the Endgame for consensus?

No!

- Bitcoin is secure only under <u>synchrony</u> but not under <u>partial synchrony</u>.
- It *confirms* blocks with an error probability as a function of *k*, not *finalizes* blocks.
- Energy?

Dark Side of Bitcoin: Energy

Power hungry

Electricity consumption, terawatt-hours, annualised

- Canada

Photo taken from the article "As the price of bitcoin has climbed, so has its environmental cost" that appeared at The Economist on May 14th 2021.

No Attacks on Bitcoin?

Ghash.IO had >50% in 2014
Gave up mining power
No Selfish mining attacks?
Why are visible attacks not more frequent?
Miners care about the Bitcoin price.

- Might not be rational to attack.
 - No guarantees for the future.